Thursday, June 30, 2011

Best Poster and Best Fire Science Image Awards at the 10th International Symposium on Fire Safety Science!

The 10th International Symposium on Fire Safety Science was held at the University of Maryland, College Park this past week and brought together an impressive group of scientists and engineers working on today's fire science problems. Before I go on about the conference, a moment of sharing the exciting news that we have won both the Best Poster and Best Fire Science Image Awards! The image, "Fan of Fire" - Surface Inclination Effects on Upward Flame Spread and the poster "An Experimental Study of Upward Flame Spread over Inclined Fuels" with authors Michael J. Gollner, Xinyan Huang, Forman A. Williams, and Ali S. Rangwala won these awards! A description of the image shown is at the bottom and the poster can be viewed here.


The conference was an excellent opportunity to interact with researchers in so many different aspects of the fire problem. Prof. Carlos Fernandez-Pello delivered a plenary lecture on ignition of solid fuels, which is a topic that especially resonates with the fire community with the development of new pyrolysis models. It was also great to see a presence from the wildfire research community, culminating with the plenary lecture by Domingos Xavier Viegas. I learned a lot from presentations, but perhaps the most important facet of the conference were the comments, suggestions and ideas I received from fellow researchers. There are too many to name, but I want to thank all those who contributed. I look forward to the next conference in 2014 in New Zeland!




"Fan of Fire" – Surface Inclination Effects on Upward Flame Spread
Michael Gollner, Xinyan Huang and Forman A. Williams
University of California, San Diego
Ali S. Rangwala
Worcester Polytechnic Institute

This “fan of fire” visually displays the effect gravity has on upward flame spread over thermally-thick materials. Starting from the left “ceiling fire”, as the inclination angle or tilt of a burning surface is increased underside flames transition from blue, well-mixed laminar flames into increasingly turbulent yellow flames on the topside that “lift” from the surface dramatically increasing the flame thickness. These images were taken perpendicular to the surface of a thick sample of Polymethyl Methacrylate mounted flush into insulation board as flames spread upward. These tests have helped in finding critical inclinations with maximum flame spread rates, burning rates and heat fluxes from the flame.

Friday, June 17, 2011

Part II of Paper on Commodity Classification Published in the Fire Safety Journal


Part II of our paper, "Warehouse commodity classification from fundamental principles. Part II: Flame heights and flame spread", has recently been published in the Fire Safety Journal. The image at the right shows a research approach to the warehouse fire problem. The two smaller scales studied in this work are shown by the dashed box. You can follow a link to the article at: doi:10.1016/j.firesaf.2011.05.002.

Abstract:

In warehouse storage applications, it is important to classify the burning behavior of commodities and rank them according to their material flammability for early fire detection and suppression operations. In this study, a preliminary approach towards commodity classification is presented that models the early stage of large-scale warehouse fires by decoupling the problem into separate processes of heat and mass transfer. Two existing nondimensional parameters are used to represent the physical phenomena at the large-scale: a mass transfer number that directly incorporates the material properties of a fuel, and the soot yield of the fuel that controls the radiation observed in the large-scale. To facilitate modeling, a mass transfer number (or B-number) was experimentally obtained using mass-loss (burning rate) measurements from bench-scale tests, following from a procedure that was developed in Part I of this paper.

Two fuels are considered: corrugated cardboard and polystyrene. Corrugated cardboard provides a source of flaming combustion in a warehouse and is usually the first item to ignite and sustain flame spread. Polystyrene is typically used as the most hazardous product in large-scale fire testing. The nondimensional mass transfer number was then used to model in-rack flame heights on 6.1–9.1 m (20–30 ft) stacks of ‘C’ flute corrugated cardboard boxes on rack-storage during the initial period of flame spread (involving flame spread over the corrugated cardboard face only). Good agreement was observed between the model and large-scale experiments during the initial stages of fire growth, and a comparison to previous correlations for in-rack flame heights is included.

Part I of this paper has also been published in the Fire Safety Journal and can be found at: doi:10.1016/j.firesaf.2011.03.002